

OPTIPRIME-TF

Ultra-High Resolution & Ultra-High Sensitivity, State-of-the-Art DUV-Vis-NIR Thin Film Measurement System Based on Optimized Broad-Band Reflectometry FULLY AUTOMATED, HIGH THROUGHPUT, LOW CoO
THIN FILM OPTICAL METROLOGY SYSTEM FOR PHOTOLITHOGRAPHY,
ETCH, DIFFUSION, CVD PLASMA FILMS, AND CMP MODULES

UNPARALLELED ACCURACY AND VERSATILITY

ADVANCED METROLOGY MAKES CHARACTERIZING SINGLE & MULTI-LAYER FILM STACKS FAST AND EASY

- Optimized Reflectance Data
- Wavelength Range: 190 1000 nm in 1 nm Intervals
- Micro-Spot Technology
- Can be Configured for 300 mm (12"), 200 mm (8"), 150 mm (6") Wafers
- · Based on Patented All-Reflective Optics that Optimizes the Signal–to–Noise Ratio
- · Strong Sensitivity to Sub-Nanometer Material Variations
- Thin Film Measurements:
 - Thickness
 - n and k (from 190 1000 nm)
 - Energy Band Gap (E)
 - Interface Roughness
 - Composition, for example:
 - %N, %H, %O in SiO,N.:H
 - %N in TiN
 - . %Ge in SiGe
 - Microstructure, for example degree of crystallinity of:
 - · Poly -Si
 - \cdot GST
- · Cognex Pattern Recognition Software
- No Re-Alignment Issues Upon Light Bulb Replacement
- Modular Design Easy to Maintain and Service
- GEM/SECS Communication Interface Third Party Certification
- · SEMI Standards and Third Party Certification
- · CE Marking

KEY QUALITIES OF THE OPTIPRIME-TF

ACCURATE CHARACTERIZATION OF FILMS DEPOSITED ON PATTERNED AND UN-PATTERNED SUBSTRATES

By combining an all-reflective optical design for a micro-spot and field proven analysis software, the n&k OptiPrime-TF readily characterizes complex film structures

FAST AND EASY ANALYSIS IDEAL FOR SINGLE AND MULTI-LAYER STRUCTURES

The n&k OptiPrime-TF uses an intuitive graphical user interface and takes just seconds to completely characterize (that is, determine thickness and n and k spectra) single and multi-layer structures

OPTIMIZED SIGNAL-TO-NOISE RATIO THROUGHOUT THE ENTIRE 190-1000nm WAVELENGTH RANGE

With the n&k OptiPrime-TF's patented optical design, the complete spectral range from 190 to 1000 nm is measured with micro-spot technology and with optimized signal-to-noise

SIMULATION SOFTWARE

With the simulation software, the user can determine the effect of variations in film parameters (like n, k, or thickness) on the reflectance

OPTIPRIME-TF

PHYSICAL CHARACTERISTICS

Dimensions (W x D x H): Weight (unpacked): Facility Requirements:

112 cm x 202 cm x 189 cm 770 kg 100 - 240 V, 50/60 Hz, 1Φ Vacuum, CDA (for FOUP Load Port)

SYSTEM OPERATION FLOW

A FEW SELECTED MEASUREMENT EXAMPLES

· SiO.

· Polyimide

• a-Si

· SiN / SiO

TiN

· Poly-Si/SiO

· Resist / SiO

Resist

· SiN / SiO N

· ARC

· SiO N

• Si_rGe_{1-r}

• Poly-Si

• a-Si/SiO

· Polymers

· SiO, / Poly-Si / SiO, · SOI

· SiO, / Al

· Thin Metal Films: Ti, Ag, Au, etc.

· SiN,

• a−Si:H

• SiO_{x}/SiN_{x}

· SiO, / SiN, / SiO,

· SiC

· SiO / TiN / Al

BST

· CrSi / SiO

· Resin

Thin Film Application Examples

The n&k OptiPrime-TF's covers both current and next generation thin film measurement demands for R&D and production: Ultra Thin Films and Residual Layers, Multi-Layer Stacks, Inhomogeneous Films, 193 nm and 248 nm ARCs and Resists, Low-κ Films, High-κ Films, and films deposited on practically any substrate (including rough surfaces).

100

ROUGH POLY-SI ON SIO,

- The wide wavelength range (190 1000 nm) of the OptiPrime-TF is needed in order to simultaneously measure the surface roughness and film thickness values
- The data is sensitive to the n and k values of the Poly-Si layer, which can be measured to determine the silicon properties (from amorphous to crystalline)

COMPLEX MULTI-LAYER FILM STRUCTURE

- Complex multilayer film stacks can be measured with the OptiPrime-TF
- Super structures, with sets of repeating layers, can be fully modeled in the analysis software
- Film stacks containing over 80 layers have been successfully measured

ADVANCED LITHOGRAPHY: RESIST / BARC / SI SUBSTRATE

193 nm Resist = 2968 Å

193 nm BARC = 819 Å

Silicon Substrate

Thicknesses and n and k spectra of 193 nm BARC and Resist are simultaneously determined:

1000

Thickness Results:

193 nm Resist = 2968 Å 193 nm BARC = 819 Å

Thin Film Application Examples

COMPOSITION OF SiO_xN_y FILMS

in the lower wavelength regions of the spectra

Based on results obtained by the n&k OptiPrime-TF for n, k, and E_g , the amounts of Si, O, and N in "SiO_xN_y" films can be properly adjusted to achieve desired electrical and optical properties for various applications: Overcoat, Interlayer Dielectric, Antifuse Material, and Anti-Reflective Coating (ARC).

The graphs below show the n and k spectra and E_g of (1) Very Si-rich SiN_x, (2) Si-rich SiN_x, (3) SiO_x, and (4) SiO_xN_y compared to the extrema of SiO_xN_y, as measured by the n&k OptiPrime-TF. Note the n&k OptiPrime-TF measures film thickness simultaneously with each n and k spectra.

HIGH-K GATE INSULATORS: ATOMIC LAYER DEPOSITION (ALD)

